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CLASSES DE CONGRUENCE

(Z,+,×)

Soit n ∈ N∗, on considère la relation R suivante :

aR b si et seulement si a = b mod n

- Rappeler ce qu’est une relation d’équivalence

- Montrer que la relation R est une relation d’équivalence

Pour tout a ∈ Z, on note C(a) la classe d’équivalence de a. Pour tout
a,b ∈ Z, on a

C(a)+C(b) =C(a+b)

et
C(a)×C(b) =C(a×b)
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CLASSES DE CONGURENCE

Soit n ∈ N∗,

Z/nZ= {C(0),C(1),C(2), . . . ,C(n−1)}

Z/nZ= {0,1,2, · · · ,n−1}

La loi + et la loi × se définissent aussi sur cet espace appelé espace
quotienté par la relation R .

Z/nZ= Zn
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LE THÉORÈME DE SUN-ZI (RESTES CHINOIS)

THÉORÈME (DE SUN-ZI)
Soit n et m deux entiers premiers entre eux, i.e. pgcd(n,m) = 1. Alors
pour tout a,b ∈ Z il existe une unique solution modulo nm au système
d’équation {

x = a mod n
x = b mod m

- Preuve

- Que se passe t’il quand n et m ne sont pas premiers entre eux?
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ÉLÉMENTS INVERSIBLES

(Zn,+,×) est un anneau. Il se peut que des éléments ne soient pas
inversibles pour la loi ×.
Rappel :

PROPRIÉTÉ (IDENTITÉ DE BÉZOUT)
Soit a et b deux entiers. a et b sont premiers entre eux si et
seulement si il existe (u,v) ∈ Z2 tel que

au+bv = 1

- Montrer pourquoi les éléments inversibles dans Zn pour la loi ×
sont tous les éléments premiers avec n.
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LE GROUPE MULTIPLICATIF

DÉFINITION (LE GROUPE MULTIPLICATIF)

(Zn)
× = {x ∈ Zn inversibles pour ×}

c’est-à-dire tous les éléments premiers avec n dans {0,1, · · · ,n−1}.
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L’INDICATRICE D’EULER

DÉFINITION (L’INDICATRICE D’EULER)
L’indicatrice d’Euler notée ϕ est une fonction de N∗ dans N∗ qui
« compte » le nombre d’éléments premiers et inférieurs ou égaux à n
où n est l’entrée de la fonction :

φ : N∗ → N∗

n 7→ |{m ∈ N∗|m ≤ n et m premiers avec n

c’est-à-dire exactement le cardinal de (Zn)
×

On peut montrer les propriétés suivantes :

▶ φ(1) = 1
▶ φ(p) = p−1 pour p un nombre premier

▶ φ(pα) = pα − p(α−1) pour p premier et α ∈ N∗

▶ φ(n×m) = ϕ(n)×ϕ(m) pour n et m premiers entre eux.
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THÉORÈME D’EULER

THÉORÈME (EULER)
Pour tout entier n > 0 et tout entier a premier avec n,

aφ(n) = 1 mod n

- Rappeler le théorème de Lagrange

- Rappeler l’ordre d’un élément dans un groupe

- En déduire une preuve du théorème d’Euler
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RSA - RIVEST SHAMIR ADLEMAN (1977)

Génération de clefs :
▶ p,q deux nombres premiers, N = p×q, e un entier premier avec

φ(N)

▶ pk = (N,e)
▶ sk = d (et p et q et φ(N)) où d est l’inverse de e modulo φ(N).
▶ m ∈ M = ZN = C

Chiffrement :

Enc : (N×N)×ZN → ZN

(N,e),m) 7→ c = me mod N
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RSA - RIVEST SHAMIR ADLEMAN (1977)

p,q premiers, N = p×q, e tel que pgcd(e,φ(N)) = 1. d l’inverse de e
modulo φ(N).

de = 1 mod φ(N)

i.e. il existe k ∈ Z tel que de = 1+ kφ(N).

pgcd(e,φ(N)) = 1

Identité de Bézout : il existe (u,v) tels que

ue+ vφ(N) = 1

et
de+ kφ(N) = 1
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RSA - RIVEST SHAMIR ADLEMANN (1977)
▶ p,q premiers
▶ N = p×q
▶ e tel que pgcd(e,φ(N)) = 1
▶ de = 1 mod φ(N)

Chiffrement :

Enc : (N×N)×Z/NZ→ Z/NZ
((N,e),m) 7→ c = me mod N

Déchiffrement :

Dec : N×Z/NZ→ Z/NZ
(d,c) 7→ m = cd mod N

- Montrer quand m est premier avec N que le chiffrement est
correct. (cas non premier en TD)

- Montrer pourquoi, même si sk = d, les autres valeurs q, p et
φ(N) doivent aussi rester secrètes.
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RSA EST-IL IND-CPA ?

- Rappeler la définition d’IND-CPA.

- RSA et-il IND-CPA?

- En une phrase dire pourquoi RSA n’est pas IND-CPA.

On doit « randomiser » le chiffrement !
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RSA RANDOMISÉ - UN ESSAI À LA ELGAMAL
Chiffrement ElGamal :

Enc : G×G → G×Z/nZ
(pk,m) 7→ (m · pkr,gr) = (m ·grsk,gr)

où r est une valeur tirée aléatoirement dans Zn.

Proposition avec RSA :

c1 = r+me mod N

c2 = re mod N

c = (c1,c2)

- Donner la procédure de déchiffrement (cf TD)

- Montrer que ce chiffrement n’est toujours pas IND-CPA (début du
TD TODO NUMBER)
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RSA RANDOMISÉ - CONCATÉNATION D’ALÉA

PKCS#1v1.5 :

PKCS : Public-Key Cryptography Standards

c = (0x00||0x02||v||0x00||m)e mod N

Cassé - Bleichenbacher (cf TD)
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RSA OAEP

OAEP : Optimal Asymmetric Encryption Padding
Soit n = blog2(N)c. Soit ℓ < n.

Soit
G : {0,1}ℓ →{0,1}n

un générateur pseudo-aléatoire.
Et soit

H : {0,1}n →{0,1}ℓ

une fonction de compression.
M = {0,1}n−ℓ et C = ZN ≈ {0,1}n

Enc : (N×N)×{0,1}n−ℓ → ZN

(N,e,m) 7→ (m⊕G(r)||r⊕H(m⊕G(r)))e
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RSA OAEP
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r m

ℓ n− ℓ

G
⊕

H
⊕

X 7→ Xe

c
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CONCLUSION

▶ Rappels congruence : modulos à comprenadre et connaître ++

▶ Théorème de Sun-Zi (restes chinois)

▶ Éléments inversibles, groupe multiplicatif, indicatrice d’Euler
aφ(n) = 1 mod n si a inversible modulo n.

▶ RSA : e, N, d, p, q, φ(N)

▶ Malléable (pas IND-CPA)

▶ à randomiser

▶ Et pas n’importe comment !

PROBLÈME
La factorisation est un problème « difficile ».

- Est-ce que RSA - OAEP est IND-CPA si H et G sont sécurisés
sous la factorisation?
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