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CLASSES DE CONGRUENCE

(Z,+, %)

Soit n € N*, on considére la relation R suivante :

aRb sietseulementsia=»b modn

#» Rappeler ce qu’est une relation d’équivalence
#» Montrer que la relation & est une relation d’équivalence

Pour tout a € Z, on note C(a) la classe d’équivalence de a. Pour tout
a,beZ,ona
C(a)+C(b)=C(a+b)

et
Cla) x C(b) = Cla x b)
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CLASSES DE CONGURENCE

Soit n € N*,

Z/nZ = {C(0),C(1),C(2),...
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Soit n € N*,

Z/nZ = {C(0),C(1),C(2),...,Cn—1)}

Z/nZ={0,1,2,--- ,n—1}

La loi 4 et la loi X se définissent aussi sur cet espace appelé espace
quotienté par la relation % .

Z/nT. =17,
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LE THEOREME DE SUN-ZI (RESTES CHINOIS)

THEOREME (DE SUN-ZI)
Soitn et m deux entiers premiers entre eux, i.e. pged(n,m) = 1. Alors

pour tout a,b € 7 il existe une unique solution modulo nm au systéme
d’équation

x=a modn
x=b modm
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LE THEOREME DE SUN-ZI (RESTES CHINOIS)

THEOREME (DE SUN-ZI)

Soitn et m deux entiers premiers entre eux, i.e. pged(n,m) = 1. Alors
pour tout a,b € 7 il existe une unique solution modulo nm au systéme
d’équation
x=a modn
{x =b modm

# Preuve

#» Que se passe t'il quand n et m ne sont pas premiers entre eux ?
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ELEMENTS INVERSIBLES

(Zn,+, %) est un anneau. Il se peut que des éléments ne soient pas
inversibles pour la loi x.
Rappel :

PROPRIETE (IDENTITE DE BEZOUT)

Soit a et b deux entiers. a et b sont premiers entre eux si et
seulement si il existe (u,v) € 7* tel que

au+bv =1

#» Montrer pourquoi les éléments inversibles dans Z,, pour la loi x
sont tous les éléments premiers avec n.
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LE GROUPE MULTIPLICATIF

DEFINITION (LE GROUPE MULTIPLICATIF)

(Zn)* = {x € Zy inversibles pour x }
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LE GROUPE MULTIPLICATIF

DEFINITION (LE GROUPE MULTIPLICATIF)

(Zn)* = {x € Zy inversibles pour x }

c'est-a-dire tous les éléments premiers avec n dans {0, 1,---
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L INDICATRICE D’ EULER

DEFINITION (L’ INDICATRICE D’EULER)
Lindicatrice d’Euler notée ¢ est une fonction de N* dans N* qui
« compte » le nombre d’éléments premiers et inférieurs ou égaux a n
ou n est I'entrée de la fonction :
¢:N"— N*

n— |{m € N*|m < n etm premiers avec n

c'est-a-dire exactement le cardinal de (Zy)*
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L INDICATRICE D’ EULER

DEFINITION (L’ INDICATRICE D’EULER)

Lindicatrice d’Euler notée ¢ est une fonction de N* dans N* qui

« compte » le nombre d’éléments premiers et inférieurs ou égaux a n
ou n est I'entrée de la fonction :

¢:N"— N*

n— |{m € N*|m < n etm premiers avec n

c'est-a-dire exactement le cardinal de (Zy)*

On peut montrer les propriétés suivantes :
> <p( )=
¢(p) = p— 1 pour p un nombre premier
o(p 0‘) p*— pla.—1) pour p premier et o € N*
@(n x m) = ¢(n) x ¢(m) pour n et m premiers entre eux.
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THEOREME D’ EULER

THEOREME (EULER)
Pour tout entier n > 0 et tout entier a premier avec n,

a®™ =1 modn
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THEOREME D’ EULER

THEOREME (EULER)
Pour tout entier n > 0 et tout entier a premier avec n,

a®™ =1 modn

# Rappeler le théoréme de Lagrange
#» Rappeler I'ordre d’'un élément dans un groupe
#» En déduire une preuve du théoreme d’Euler
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RSA
Construction
Sécurité de RSA
RSA randomisé
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RSA - RIVEST SHAMIR ADLEMAN (1977)

Génération de clefs :
» p,g deux nombres premiers, N = p X ¢, e un entier premier avec
®(N)
» pk=(N,e)
» sk=d (et p etq et o(N)) ol d estlinverse de ¢ modulo ®(N).
> meM = Zy =C
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Génération de clefs :
» p,g deux nombres premiers, N = p X ¢, e un entier premier avec
o(N)
» pk=(N,e)
» sk=d (et p etq et o(N)) ol d estlinverse de ¢ modulo ®(N).
> meM = Zy =C
Chiffrement :

Enc: (NXN)XZN%ZN
(N,e),m)—c=m° modN
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RSA - RIVEST SHAMIR ADLEMAN (1977)

p,q premiers, N = p x g, e tel que pged(e, o(N)) = 1. d l'nverse de e
modulo @(N).
de =1 mod @(N)

i.e. il existe k € Z tel que de = 1 +k@(N).
pged(e, 9(N)) =1
Identité de Bézout : il existe (u,v) tels que
ue+vo(N) =1

et
de +ko(N) =1
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RSA - RIVEST SHAMIR ADLEMANN (1977)

> p,q premiers
> N=pxq
> e tel que pged(e,o(N)) =1
» de=1 mod@(N)
Chiffrement :
Enc:(NxN)xZ/NZ — 7Z/NZ
((N,e),m)+—c=m" modN
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RSA - RIVEST SHAMIR ADLEMANN (1977)
> p,q premiers
> N=pxq
> e tel que pged(e,o(N)) =1
» de=1 mod@(N)
Chiffrement :
Enc:(NxN)xZ/NZ — 7Z/NZ
((N,e),m)+—c=m" modN

Déchiffrement :

Dec:NxZ/NZ — Z/NZ
(d,c)»m=c! modN

# Montrer quand m est premier avec N que le chiffrement est
correct. (cas non premier en TD)

#» Montrer pourquoi, méme si sk = d, les autres valeurs ¢, p et
¢©(N) doivent aussi rester secretes.
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RSA EST-IL IND-CPA ?

#» Rappeler la définition d'IND-CPA.
#» RSA et-il IND-CPA?
#v En une phrase dire pourquoi RSA n’est pas IND-CPA.

On doit « randomiser » le chiffrement!
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RSA RANDOMISE - UN ESSAI A LA ELGAMAL
Chiffrement EIGamal :

Enc:GxG— GxZ/nZ
(pk,m) — (m-pk',g") = (m-g"**,g")

ou r est une valeur tirée aléatoirement dans 7Z,,.
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RSA RANDOMISE - UN ESSAI A LA ELGAMAL
Chiffrement EIGamal :

Enc:GxG— GxXZ/nZ
(pkym) = (m-pk',g") = (m-g"**,g")
ou r est une valeur tirée aléatoirement dans 7Z,,.
Proposition avec RSA :
ci=r+m° modN

¢ =r° modN

¢ =(c1,02)
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RSA RANDOMISE - UN ESSAI A LA ELGAMAL
Chiffrement EIGamal :

Enc:GxG— GXZ/nZ
(pk,m) — (m-pk',g") = (m-g"**,g")

ou r est une valeur tirée aléatoirement dans 7Z,,.
Proposition avec RSA :

ci=r+m° modN
¢ =r° modN
c=(c1,c2)

#» Donner la procédure de déchiffrement (cf TD)

#» Montrer que ce chiffrement n’est toujours pas IND-CPA (début du
TD TODO NUMBER)
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RSA RANDOMISE - CONCATENATION D’ ALEA

PKCS#1v1.5 :
PKCS : Public-Key Cryptography Standards

¢ = (0x00[|0x02||v||0x00||m)¢ mod N

Cassé - Bleichenbacher (cf TD)
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RSA OAEP

OAEP : Optimal Asymmetric Encryption Padding
Soit n = |log,(N) . Soit ¢ < n.
Soit

G:{0,1}* = {0,1}"

un générateur pseudo-aléatoire.
Et soit

H:{0,1}" —{0,1}"

une fonction de compression.
M ={0,1}"" et C=Zy ~{0,1}"

Enc: (NxN)x{0,1}"" = 7Zy
(Nye,m)— (m@G(r)|[roHm®G(r)))°
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Et pas n’importe comment!

PROBLEME
La factorisation est un probléeme « difficile ».

#» Est-ce que RSA - OAEP est IND-CPA si H et G sont sécurisés
sous la factorisation ?
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