La fonction ϕ d'Euler

christina.boura@uvsq.fr

6 mars 2020

1 La fonction ϕ d'Euler

Un sous-ensemble important de $\mathbb{Z}/n\mathbb{Z}$ est l'ensemble des éléments qui ont un inverse multiplicatif modulo n. Ce sous-ensemble, qui forme un groupe, est noté $(\mathbb{Z}/n\mathbb{Z})^*$.

Définition 1.1. Soit n un entier positif. Alors,

$$(\mathbb{Z}/n\mathbb{Z})^* = \{ a \in \mathbb{Z}/n\mathbb{Z} \mid \operatorname{pgcd}(a, n) = 1 \}.$$

Théorème 1.2. Soit p un nombre premier. Alors, $(\mathbb{Z}/p\mathbb{Z})^* = \{1, 2, \dots p-1\}.$

 $D\acute{e}monstration$. Tous les entiers inférieurs à p sont relativement premiers avec lui.

On s'intéresse au nombre d'éléments dans $(\mathbb{Z}/n\mathbb{Z})^* = \{0, 1, \dots, n-1\}$, or cherche le nombre d'entiers qui sont premiers avec n. Comment peut-on determiner cela?

Première approche: On peut calculer

$$pgcd(0, n) = n$$

$$pgcd(0, n) = 1$$

$$\dots$$

$$pgcd(n - 1, n) = 1$$

et compter le nombre de résultats égaux à 1. On peut alors donner la définition suivante :

Définition 1.3 (La fonction ϕ d'Euler). Le nombre d'entiers de $\mathbb{Z}/n\mathbb{Z}$ qui sont relativement premiers avec n est noté $\phi(n)$.

Exemple 1.4. Soit n = 6 et $\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$. Calculer $\phi(6)$.

On calcule:

$$pgcd(0,6) = 6$$

 $pgcd(1,6) = 1$
 $pgcd(2,6) = 2$
 $pgcd(3,6) = 3$
 $pgcd(4,6) = 2$
 $pgcd(5,6) = 1$

Donc $\phi(6) = 2$.

La problème de cette approche est qu'on ne peut pas appliquer cela a des nombres très grands.

Question : Comment calculer $\phi(n)$ pour n grand?

Il existe une formule très simple pour calculer $\phi(n)$ qui nécessite la connaissance de la factorisation de n en nombres premiers.

Factorisation de n en nombres premiers Chaque entier peut etre ecrit comme le produit de nombres premiers :

$$n=p_1^{e_1}\cdot p_2^{e_2}\cdots p_k^{e_k},$$

 $p_1, p_2, \dots p_k$ sont des nombres premiers distincts. Cette décomposition est unique.

Exemple Soit $n = 280 = 4 \cdot 70 = 4 \cdot 2 \cdot 35 = 2^3 \cdot 5 \cdot 7 = p_1^{e_1} \cdot p_2^{e_2} \cdot p_3^{e_3}$.

Proposition 1.5. Si $n = p_1^{e_1} \cdot p_2^{e_2} \cdots p_k^{e_k}$, où p_i sont des nombres premiers distincts, nous avons

$$\phi(n) = (p_1^{e_1} - p_1^{e_1 - 1})(p_2^{e_2} - p_2^{e_2 - 1}) \cdots (p_k^{e_k} - p_k^{e_k - 1}).$$

En particulier, la fonction ϕ d'Euler vérifie les propriétés suivantes :

- 1. $\varphi(1) = 1$
- 2. Pour tout p premier, et tout $e \ge 1$, $\phi(p^e) = p^e p^{e-1}$.
- 3. Pour tout m, n tels que pgcd(m, n) = 1, $\phi(mn) = \varphi(m)\varphi(n)$.

Exemple 1.6. Calculer:

- 1. $\phi(7)$
- 2. $\phi(2583)$ sachant que $2583 = 3^2 \cdot 7 \cdot 41$.

Solution:

- 1. $\phi(7) = 7 1 = 6$
- 2. $\phi(m) = (3^2 3^1)(7^1 7^0)(41^1 41^0) = 6 \cdot 6 \cdot 40 = 1440.$