
FONCTIONS DE HACHAGE CRYPTOGRAPHIQUES
LA PRIMITIVE SANS CLEF TRÈS UTILE

Yann Rotella

UVSQ - Université Paris-Saclay

12 mars 2026

PLAN DU COURS

DÉFINITIONS

UTILISATION

EXEMPLES

CONSTRUCTIONS

1 / 29

DÉFINITIONS

UTILISATION

EXEMPLES

CONSTRUCTIONS
Le padding
Merkle-Damgard
Davies-Meyer
Autres constructions

2 / 29

FONCTIONS DE HACHAGE

H : {0,1}∗ →{0,1}n

3 / 29

FONCTIONS DE HACHAGE CRYPTOGRAPHIQUES

H : {0,1}∗ →{0,1}n

PROPRIÉTÉ (FONCTION DE HACHAGE CRYPTOGRAPHIQUES)
H est une fonction de hachage cryptographique si
(1) la fonction est résistante aux collisions : il est « difficile » de

trouver m et m′ avec m ̸= m′ tels que H(m) = H(m′).

(2) la fonction est résistante aux pré-images : connaissant
h ∈ {0,1}n, il est « difficile » de trouver m tel que H(m) = h.

(3) la fonction est résistante aux secondes pré-images : connaissant
h ∈ {0,1}n et m tels que H(m) = h, il est « difficile » de trouver
m′ tel que H(m′) = H(m) = h avec m ̸= m′.

- Est-ce qu’il existe un algorithme en O(1) qui renvoie une
collision?

- Est-ce que ∀h ∈ {0,1}n il est difficile de trouver m tel que
H(m) = h ? 4 / 29

COMPLEXITÉ GÉNÉRIQUE

H : {0,1}∗ →{0,1}n

(1) Complexité générique pour trouver une collision ?

(2) Complexité générique pour trouver une pré-image ?

(3) Complexité générique pour trouver une seconde pré-image?

5 / 29

DÉFINITIONS

UTILISATION

EXEMPLES

CONSTRUCTIONS
Le padding
Merkle-Damgard
Davies-Meyer
Autres constructions

6 / 29

OÙ SONT LES FONCTIONS DE HACHAGE ?

Les fonctions de hachage cryptographiques sont utilisées dans
« toute » la crypto

▶ BlockChain (preuve de travail)

▶ Signatures (Cours 10)

▶ MACs (La semaine prochaine)

▶ Certificats (Cours 11)

▶ Stockage de mots de passe (Ce cours)

7 / 29

LE STOCKAGE DES MOTS DE PASSE

PROBLÈME
▶ Les utilisateurs ne mettent pas de mots de passe complexes.

▶ Les utilisateurs mettent des mots de passe « similaires »entre les
différents sites.

▶ Et ce même s’il y a des règles plus ou moins complexes.

▶ Les serveurs ont besoin de stocker les mots de passe.

▶ Les bases de données peuvent fuiter.

8 / 29

CAS 1 - STOCKAGE DES MOTS DE PASSE DIRECTEMENT

- Est-ce que les mots de passe peuvent être lus en observant la
connexion?

On distingue deux choses : les attaques « online » et les attaques
« offline ».

- Comment gérer le cas où les utilisateurs mettent des mots de
passe simples dans des attaques de type « online »?

- Que se passe-t-il si la base de données du serveur fuite?

9 / 29

CAS 2 - UTILISER UNE FONCTION DE HACHAGE

On suppose maintenant que le serveur va stocker

H(mdp)

au lieu de stocker mdp.

- Donner le processus d’authentification associé à cette méthode.

- Est-ce possible qu’un utilisateur puisse se connecter avec un
autre mot de passe?

- Maintenant si la base de données fuite, l’attaquant a accès à
(H(mdpi))i≥0. Est-ce faisable de retrouver mdpi si

1. Les mots de passe sont générés aléatoirement sur 256 bits ;
2. La taille de sortie de la fonction de hachage est de 256 bits ;
3. La fonction de hachage est « parfaite »(i.e. il n’y a pas d’attaque

connue meilleure que l’attaque générique)?

- Les mots de passe n’étant pas générés aléatoirement et sont
« simples », pensez-vous qu’il est possible d’en retrouver une
partie?

10 / 29

CAS 2 - UTILISER UNE FONCTION DE HACHAGE ET UN

SEL

Pour tout utilisateur i, on génère une valeur aléatoire dans
salti ∈ {0,1}n. Le serveur va alors stocker

H(mdpi||salti)

au lieu de stocker mdp.

- Donner le processus d’authentification associé à cette méthode.

- L’attaquant peut-il connaître salti ?

- En utilisant la stratégie précédente, donner le coût de réussite de
l’attaque afin de retrouver les mots de passe dits « simples ».

11 / 29

STOCKAGE DE MOTS DE PASSE

On distingue trois types d’attaques :

▶ Attaque par dictionnaire et force brute : tester tous les mots de
passe simples. Le coût, avec du sel, est de |D|×Nuser.

▶ Attaque par Rainbow Tables : si pas de sel, hacher tous les mots
de passe, et réaliser le match entre cette table et la base de
données.

Utiliser un gestionnaire de mots de passe, avec génération aléatoire
des mots de passe, et les changer « fréquemment ».

12 / 29

DÉFINITIONS

UTILISATION

EXEMPLES

CONSTRUCTIONS
Le padding
Merkle-Damgard
Davies-Meyer
Autres constructions

13 / 29

QUELQUES FONCTIONS DE HACHAGE

▶ MD5

▶ SHA-1

▶ RIPEMD-160

▶ SHA-2 (SHA-256)

▶ SHA-3 (construction vue à la fin du cours)

▶ BLAKE2 and BLAKE3

14 / 29

SÉCURITÉ DE MD-5

Message Digest 5, Ronald Rivest 1992

▶ 1996 : Première attaque (Hans Dobbertin), les cryptographes
suggèrent de passer à RIPEMD où à SHA-1

▶ 2004 : Attaque pratique en utilisant le paradoxe des anniversaires

▶ 2004 : Wang, Feng, Lai and Yu : une heure sur un cluster IBM
pour des collisions

▶ 2005 : Lenstra, Wang et de Weger montrent comment produire
deux certificats TLS valides

▶ 2008 : Alexander Sotirov, Marc Stevens, Jacob Appelbaum, Arjen
Lenstra, David Molnar, Dag Arne Osvik, et Benne de Weger
créent un certificat qui apparait légitime.

▶ 2012 : attaque massive (Flame malware) - Windows code
signature.

15 / 29

SÉCURITÉ DE SHA-1
NSA design (SHA-2 also)

▶ 2005 : Rijmen et Oswald 53 cassent 53 des 80 tours (280−ε)

▶ 2005 : Wang, Yin et Yu (CRYPTO 2005) Full SHA-1 en 269, 58
tours en pratique

▶ 2006 (Asiacrypt) : De Cannière et Rechberger 64 tours en 235

appels

▶ 2010 : Marc Stevens. Almost Full SHA-1 en 257.5

▶ 2015 : SHAppening : IV choisi - collision complète (Marc Stevens,
Pierre Karpman and Thomas Peyrin), 2000$

▶ 2017 : SHAttered, première collision sur deux fichiers PDFs, CWI
et Google, 263 évaluations, 6500 années d’un seul CPU.

▶ Avril 2019 : Gaetan Leurent, Thomas Peyrin, 268 pour des
collisions à préfixe choisi.

▶ 5 janvier 2020 : Gaetan Leurent et Thomas Peyrin, deux
certificats valides produits.

16 / 29

DÉFINITIONS

UTILISATION

EXEMPLES

CONSTRUCTIONS
Le padding
Merkle-Damgard
Davies-Meyer
Autres constructions

17 / 29

PADDING (OU BOURRAGE)

PROBLÈME
On ne sait construire des primitives que sur des entrées de taille fixe
et les messages sont de longueur arbitraires.

Pad : {0,1}∗ → ({0,1}n)∗

DÉFINITION (PADDING)
Un padding est une application de {0,1}∗ → ({0,1}n)∗ injective.

On veut aussi que ce soit facile, connaissant Pad(m) de retrouver m.

18 / 29

PADDING (OU BOURRAGE) - EXEMPLES

- Parmi les descriptions suivantes, donner ceux qui sont des bons
systèmes de padding.

1. On rajoute des zéros à m jusqu’à avoir un multiple de n en taille.
2. On rajoute des uns à m jusqu’à avoir un multiple de n en taille.
3. On rajoute toujours un 1 puis que des 0 jusqu’à avoir une taille

multiple de n.
4. On rajoute au message autant de zéros qu’il faut et on concatène

son nombre de bits effectif en binaire.
5. On rajoute au message autant de zéros qu’il faut et on garde

toujours les log2(n) derniers bits pour écrire la taille effective du
dernier bloc.

19 / 29

LA CONSTRUCTION MERKLE DAMGARD
Soit f une fonction de compression.

f : {0,1}n+ℓ →{0,1}n

Soit Pad : {0,1}∗ →
(
{0,1}ℓ

)∗
un bon système de padding.

Soit j le nombre de blocs de longueur ℓ après bourrage.

f

m0

IV f

m1

f f

m2 m3

· · · f

m j−1

h(m)

- Donner le pseudo-code de la construction Merkle Damgard.

On peut montrer que s’il est « difficile » de trouver des collisions sur f ,
il l’est aussi pour H construite à partir de f .

▶ L’analyse se réduit alors à la seule fonction f , construite sur un
principe itératif...

20 / 29

PROBLÉMATIQUES

▶ Ce n’est pas simple de construire une fonction de compression
(MD-4, MD-5, SHA-1, SHA-2).

▶ On peut vouloir utiliser le même circuit qu’un chiffrement par bloc
(SPN)

- Pourquoi?

▶ Prouver la construction sous l’hypothèse de chiffrement par bloc
idéal?

SOLUTION
Construire une fonction de compression à partir d’un chiffrement par
bloc.

21 / 29

FONCTIONS DE COMPRESSION À PARTIR DE

CHIFFREMENT PAR BLOC

f : {0,1}m →{0,1}n

avec m > n.
E : {0,1}κ+n →{0,1}n

Avec Merkle Damgard, on a principalement deux choix « immédiats » :

hi+1 = Ehi(mi)

ou
hi+1 = Emi(hi)

22 / 29

PREMIER CAS

∀i,hi+1 = Ehi(mi)

E E E Eh0

m0

h1

m1

h2

m2

h3

m3

h4

h(m)

- Expliquer pourquoi ce n’est pas une bonne idée.

23 / 29

DEUXIÈME CAS

∀i,hi+1 = Emi(hi)

E E E Eh0

m0

h1

m1

h2

m2

h3

m3

h4
h(m)

- A priori OK, mais pas complètement. Pouvez-vous trouver une
stratégie pour trouver une (seconde) pré-image en 2

n
2 ?

24 / 29

DAVIES-MEYER DANS MERKLE DAMGARD

E⊕ E⊕ E⊕ E⊕h0

m0

h1

m1

h2

m2

h3

m3

h4

h(m)

- Donner la fonction de compression associée dite de
Davies-Meyer.

▶ Analyse de la sécurité de la construction en TD.

25 / 29

MATYAS-MEYER-OSEAS

hi+1 = Ehi(mi)⊕mi

- Dessiner cette construction (cf TD)

26 / 29

MIYAGUCHI-PRENEEL

f = Ehi(mi)⊕mi ⊕hi

- Dessiner cette construction (cf TD)

27 / 29

LA CONSTRUCTION EN ÉPONGE (2007)

P : {0,1}r+c →{0,1}r+c

▶ G. Bertino, J. Daemen, M. Peeters et G. Van assche

▶ Si P est une permutation ou une fonction tirée aléatoirement, la
construction en éponge peut être considérée comme
indistinguable d’un oracle aléatoire.

P

⊕
P

⊕
P

⊕
P

⊕
0

0r

c

m0 m1 m2 m3

Absorption

h

P

h1

Essorage

28 / 29

CONCLUSION

IMPORTANT
▶ On ne peut pas prouver la sécurité de nos fonctions de hachage.

▶ Il est compliqué de construire des fonctions de hachage
(plusieurs anciennes constructions cassées).

▶ On a des standards actuels dans lesquels on a confiance (e.g.
SHA-3).

▶ C’est important car utilisé presque partout en cryptographie.

▶ On a toujours 2n/2 pour des collisions (anniversaires), 2n pour
pré-image et seconde pré-image.

29 / 29

	Définitions
	Utilisation
	Exemples
	Constructions
	Le padding
	Merkle-Damgard
	Davies-Meyer
	Autres constructions

