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RAPPELS DE PROBABILITÉ (SIMPLIFIÉ)
▶ Ω l’univers
▶ X une variable aléatoire v.a à valeurs dans X , un ensemble (fini)
▶ X : Ω → X

▶ À chaque expérience x ∈ X , on associe une mesure de
probabilité

Pr[X = x] = pX(x) = p(x)

▶ La loi de probabilité de X est la donnée de

p : X → [0,1]

x 7→ PrX [X = x]

Exemple (jet de dé modulo 3) :

X = {0,1,2}

∀x ∈ X ,

Pr[X = x] = pX(x) =
1
3
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PROBABILITÉ MUTUELLE ET CONDITIONNELLE

Soient X et Y deux v.a. à valeurs dans X et Y .

DÉFINITION (PROBABILITÉ MUTUELLE)

PrX ,Y (x,y) = Pr[X = x,Y = y] .

C’est la probabilité que l’événement X = x et se réalise que
l’événement Y = y se réalise.

DÉFINITION (PROBABILITÉ CONDITIONNELLE)

PrX ,Y (x|y) = Pr[X = x|Y = y] .

C’est la probabilité que l’événement X = x sachant que l’événement
Y = y est réalisé.
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ESPACE PROBABILISÉ JOINT
On considère X et Y deux variables aléatoires. Nous avons donc une
loi de probabilité sur l’espace X ×Y . Celle-ci est notée

Pr[X = x,Y = y] = pXY (x,y) .

De là, nous définissons les lois marginales sur X et Y :

Pr[X = x] = pX(x) = ∑
y∈Y

pXY (x,y)

Pr[Y = y] = pY (y) = ∑
x∈X

pXY (x,y)

Les probabilités conditionnelles peuvent alors être exprimées comme
suit :

Pr[Y = y|X = x] =
pXY (x,y)

pX(x)

Pr[X = x|Y = y] =
pXY (x,y)

pY (y)
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VARIABLES ALÉATOIRES INDÉPENDANTES

DÉFINITION (VARIABLES INDÉPENDANTES)
Les variables X et Y sont dites indépendantes si pour tout
(x,y) ∈ X ×Y ,

pX ,Y (x,y) = pX(x)pY (y) .

Exemple (jet de dé modulo 3 et les faces 1, 2 et 3 sont jaunes, les
faces 4, 5 et 6 sont orange) :

X = {0,1,2}, Y = { jaune,orange}

- Donner les lois marginales de X et Y

- Montrer que les variables sont indépendantes

- Modifier la couleur des dés pour qu’elles ne le soient plus.
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NOTION D’INFORMATION

On considère une v.a. X et une v.a. Y et on s’intéresse à la quantité
d’information apportée par la réalisation d’un événement x. On
cherche :

- Une fonction décroissante de p(x).

- Une fonction additive si les événements X = x et Y = y sont
indépendants.

- Que vaut l’information apportée par un événement certain?

- Que vaut l’information apportée par un événement n’arrivant
jamais?
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INFORMATION

DÉFINITION (INFORMATION PROPRE)
Soit X une v.a. et x un événement, l’information propre de X = x est
donnée par

I(x) =− log2(p(x))

DÉFINITION (INFORMATION MUTUELLE)
L’information mutuelle de X = x et Y = y est donnée par

I(x;y) = log2

(
p(x|y)
p(x)

)
= log2

(
p(x,y)

p(x)p(y)

)

- C’est une quantité en bit d’information.

- I(x;y) est positive négative ou nulle.
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ENTROPIE

DÉFINITION (ENTROPIE)
L’entropie H d’une v.a. X est définie par

H(X) = ∑
x∈X

−p(x) log2(p(x)

- Donne la quantité de désordre de la v.a.

- L’entropie est toujours positive
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AUTRES GRANDEURS

DÉFINITION (ENTROPIE CONDITIONNELLE)
L’ entropie conditionnelle de X sachant Y est définie par

H(X |Y ) = ∑
x∈X

∑
y∈Y

−p(x,y) log2 (p(x|y))

DÉFINITION (INFORMATION MUTUELLE MOYENNE)
L’information mutuelle moyenne de X et de Y est définie par

I(X ;Y ) = ∑
x∈X

∑
y∈Y

p(x,y) log2

(
p(x,y)

p(x)p(y)

)
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PROPRIÉTÉS DE L’ENTROPIE

THÉORÈME (INFORMATION MUTUELLE MOYENNE ET
ENTROPIE)
Pour toute v.a. X et Y , on a

I(X ;Y ) = H(X)−H(X |Y )

THÉORÈME (BORNES SUR L’ENTROPIE)
Pour toute v.a. X , on a

0 ≤ H(X)≤ log2 (|X |)

THÉORÈME (INFORMATION MUTUELLE MOYENNE)
Pour toute v.a. X et Y , on a

I(X ;Y )≥ 0
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POURQUOI ON FAIT TOUT ÇA ?

« Communication Theory of Secrecy Systems », Claude Shannon,
1949

▶ Sécurité Inconditionnelle des systèmes cryptographiques.

▶ Diffusion (prochain cours)

▶ Confusion (prochain cours)
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SÉCURITÉ INCONDITIONNELLE

Pour simplifier l’étude on se place dans un contexte où l’attaquant voit
des textes chiffrés (C)

- Quel événement l’attaquant peut observer?

- Qu’est-ce qu’on ne veut pas?

- Comment formaliser un cryptosystème inconditionnellement sûr
dans ce contexte?
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FORMALISME AVEC LA THÉORIE DE L’INFORMATION

Un cryptosystème symétrique est décrit par :

▶ M : l’ensemble des message (clairs) possibles, peut être noté P
pour « plaintext »

▶ C : l’ensemble des chiffrés possibles

▶ K : l’ensemble des clefs possibles

▶ Ek(m) : la fonction de chiffrement qui prend en entrée une clef
k ∈ K et un message m ∈ M et renvoie un chiffré c ∈ C

▶ Dk(c) : la fonction de déchiffrement.

- Rappeler la propriété que l’on souhaite pour les fonctions de
chiffrement et de déchiffrement.
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FORMALISME AVEC LA THÉORIE DE L’INFORMATION

Du point de vue de l’attaquant, celui-ci est capable d’observer des
messages c ∈ C , et cherche à obtenir de l’information sur le
message clair m transmis (ou bien sur la clef secrète k utilisée).
Comme différents messages peuvent être envoyés, ceux-ci suivent
donc une loi de probabilité Pr[M = m].
Il en va de même pour la clef Pr[K = k].
Et comme nous avons une fonction de chiffrement qui, à chaque clef
et message associe un chiffré, ceux-ci peuvent être modéliser par une
v.a. C.

DÉFINITION (SÉCURITÉ INCONDITIONNELLE)
Un cryptosystème est dit inconditionnellement sûr si la connaissance
d’un chiffré n’apporte aucune information sur le message clair.
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SÉCURITÉ INCONDITIONNELLE ET ENTROPIE

DÉFINITION (SÉCURITÉ INCONDITIONNELLE)
Un cryptosystème est dit inconditionnellement sûr si la connaissance
d’un chiffré n’apporte aucune information sur le message clair.

▶ Ceci se formalise mathématiquement en

H(M|C) = H(M)

▶ On se souvient que

H(M)−H(M|C) = I(M;C)
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INDÉPENDANCE STATISTIQUE ENTRE LES CLAIRS ET LES

CHIFFRÉS

THÉORÈME (INDÉPENDANCE STATISTIQUE ET
INFORMATION MUTUELLE MOYENNE)
Soient X et Y deux v.a., alors

I(X ;Y )≥ 0

avec égalité si et seulement si les v.a. sont indépendantes.

- Rappeler la formule de l’information mutuelle moyenne.

- Indication : log2(x)≥ log2(e)(x−1) avec égalité si et
seulement si x = 1.
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IMPLICATIONS

Soient K, M et C les trois v.a. définies précédemment.
Soit k la clef utilisée. Les v.a. M et C sont liées par la relation
C = Ek(M).

- Pour que le système soit inconditionnellement sûr, il faut que M
et C soient indépendantes

- La probabilité qu’un message clair m soit transmis sachant que
l’on a observé un chiffré c est la même que la probabilité du
message clair m soit transmis, sans avoir observé le chiffré c.
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EXEMPLE

M = {0,1,2}= C , K = {0,1}

Ek(m) = m+ k mod 3

- En supposant des lois uniformes pour K et M, donner la loi de C.
Que peut-on dire de ce chiffrement?

- Modifier le chiffrement pour avoir un chiffrement
inconditionnellement sûr

22 / 34



THÉORÈME DE SHANNON

THÉORÈME (THÉORÈME DE SHANNON)
Un système cryptographique tel que |K |= |C |= |M | assure une
confidentialité parfaite si et seulement si
▶ Pr[K = k] = 1

|K | , pour tout k ∈ K

▶ Pour tout m ∈ M , c ∈ C , il existe une clef unique k ∈ K telle que
Ek(m) = c.

- Preuve en TD.
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UN PROBLÈME DE TAILLE

THÉORÈME
Si |M |> |K | alors aucun système n’offre une confidentialité parfaite.

- Preuve en TD.
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LE CHIFFREMENT DE VERNAM - ONE-TIME-PAD

DÉFINITION (CHIFFREMENT DE VERNAM)
Soit n ≥ 1 et M ,C ,K = {0,1}n. Le chiffrement de Vernam est défini
par la fonction de chiffrement suivante :

Ek(m) : ((k0, . . . ,kn−1),(m0, . . . ,mn−1))→ (m0 ⊕ k0, . . . ,mn−1 ⊕ kn−1)

- Quelle est la fonction de déchiffrement?

- Quelles conditions pour que ce chiffrement soit
inconditionnellement sûr?

- Comment l’adapter si on travaille sur un plus grand alphabet
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PROBLÈMES

Pour avoir une sécurité parfaite, il faut que

▶ toutes les clefs soient tirées de manière uniforme

▶ chaque clef doit être aussi longue que le message transmis

▶ chaque clef n’est utilisée qu’une seule fois

- Donner des arguments expliquant pourquoi on ne peut pas
utiliser un chiffrement parfait en pratique.
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CONCLUSION

▶ On peut quantifier l’information avec une théorie mathématique

▶ Cela permet de définir ce que l’on cherche à construire

▶ Ce n’est pas pratique du tout
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▶ Comment définir une sécurité pratique?

▶ Quelles propriétés nous voulons?

▶ Quels types d’attaque?
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CE QUE L’ATTAQUANT PEUT CONNAÎTRE

E(k,m) = c

- Donner et justifier tout ce que l’attaquant peut connaître.
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MODÈLES D’ATTAQUE

▶ Chiffré connu

▶ Clair connu

▶ Chiffré choisi

▶ Clair choisi
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DÉFINITION UN PEU PLUS PRÉCISE

Soit E un algorithme de chiffrement et k une clef secrète.

▶ Connaissant c = Ek(m), puis-je retrouver m, k ?

▶ Connaissant Ek(m1), Ek(m2), Ek(m3), Ek(mi), puis-je retrouver
un des mi ?

▶ Connaissant m et Ek(m) = c, puis-je retrouver k ?

▶ Connaissant Ek(m1), Ek(m2), Ek(m3), Ek(mi) et m1,m2, . . . ,mi,
puis-je retrouver ... ?

- Prolonger la phrase suivante.

- Remplacer « connaître »par « choisir ».

- Ces contextes sont-ils pertinents en pratique? Pourquoi?
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SÉCURITÉ CALCULATOIRE

▶ Les cerveaux des attaquants

▶ Un ordinateur

▶ Plusieurs ordinateurs très performants

▶ Et dans 10 ans? Dans 20 ans? Dans 200 ans?

- Nombre d’opérations par secondes d’un CPU?

▶ Aujourd’hui : Nvidia, Bitcoin mining et GPU

▶ Frontier : ExaFLOPS : 1018 opérations par secondes

- Nombre d’atomes dans l’univers : 1080 : En supposant qu’un
algorithme cryptographique peut coûter 100 opérations environ,
donner, en puissance de deux le nombre d’opérations réalisables
par la planète en une année.
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LA RECHERCHE EXHAUSTIVE

Soient E une fonction de chiffrement et supposons que l’attaquant
connaît un couple clair chiffré (m,c).

- Donner le pseudo-code correspondant à la recherche de la clef
en les testant toutes une à une

- Quel est le coût exact de cet algorithme?

- Pourquoi la recherche exhaustive ne fonctionne (a priori) pas si
on a un chiffré seul?

- Décrire cela en terme d’information.
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