Séance 10 (et 11) - Travaux Pratiques
Cryptanalyse des Chiffrements Asymétriques

Yann ROTELLA

2026

Toute cette séance se fait en petits groupes. L’objectif est de construire son fichier python
contenant des fonctions cryptographiques vues en cours, puis de programmer des
cryptanalyses sur ces différentes fonctions.

Programmation des systémes cryptographiques connus

Exercice 1. Echange de clefs de Diffie-Hellman.
Si ce n’est déja fait, programmez 1’échange de clefs de Diffie et Hellman vu en cours sur Z,,.

Exercice 2. ElGamal.
Idem, programmez les fonctions de chiffrement et de déchiffrement du cryptosystéme d’El Gamal.

Exercice 3. RSA.
Programmez les fonctions de chiffrement et de déchiffrement du cryptosystéme de RSA.

Interlude

Exercice 4. Génération de nombres premiers.
Tous les algorithmes vus jusqu’a présent nécessitent la création de nombres premiers de grande taille.
Cependant, nous n’avons pas d’algorithme « facile » permettant de produire des nombres premiers
aléatoires. On sait cependant tester si un nombre est premier avec le test de Fermat. La stratégie consiste
donc a tirer un nombre aléatoire, tester si celui-ci est premier et recommencer.

(1) Rappeler le petit théoréme de Fermat.

(2) On utilise ce théoréme comme test probabiliste. Programmez une fonction test qui prend en
entrée un nombre et test si celui-ci est premier.

(3) On peut montrer que la probabilité que le test de Fermat échoue aprés ¢ itérations est au plus
2—¢. Combien d’itérations doit-on effectuer afin d’avoir une probabilité d’erreur inférieure a 280 ?

(4) Programmez une génération de nombres premiers en python avec un taux de réussite suffisant a
votre goft.

Cryptanalyse du log discret et de RSA

Exercice 5. La factorisation simple.
Soit n = pg impair avec p > q.

(1) Programmez la méthode de factorisation par division successive en partant de i = 2.
2 P—q

_ ptq —
avec t = 3 et s = 5

(2)
(3) On suppose maintenant que p est trés proche de g, montrer alors que ¢ est proche de y/n.
(4)

2) Vérifier que n = t? — s

En déduire une maniére de factoriser deux nombres lorsque ceux-ci sont proches. Programmez
cette méthode appelée méthode de Fermat.

Exercice 6. Baby-step giant step sur log discret.
Comme vu en cours, la sécurité de plusieurs chiffrements repose sur DDH (ou CDH).

(1) Rappelez ces problémes formellement.
(2) Rappeler le probléme du logarithme discret.

(3) Montrer pourquoi le logarithme discret est « plus dur »que CDH, qui lui-méme est plus dur que
DDH.

(4) On cherche maintenant & calculer le logarithme discret dans Z,. Pour cela, on utilise I'idée sui-
vante :

r =z +a2[/p|
avec 1 et xo inférieurs a m = [/pl.
(5) Montrer que pour tout h € (Z,)*, il existera toujours x; et x5 tels que hg™** = g*2IvPL mod p
(6) En python, programmez ’algorithme dit de Baby-Step-Giant-Step : Calculer la liste

L={1,hg,hg*,...hg™}

ou ¢ est un générateur du groupe multiplicatif.

(7) Ensuite pour chaque i € {1,...,m}, tester si (¢™) € L et renvoyer la valeur d’un logarithme
discret.

(8) Tester votre algorithme sur plusieurs valeurs de p générées avec votre fonction de génération de
nombres premiers, différents g.

(9) Drailleurs, pouvez-vous réfléchir & comment trouver un générateur de Z,, ?
(10) Comparez des challenges que vous réussissez et donnez les aux autres groupes. Comparez vos
temps d’éxécution.

(11) Une idée pour aller plus vite ?

Exercice 7. Pollard-rho sur RSA.
Ici n dénote un module RSA. Nous avons vu au TD sur les fonctions de hachage comment trouver une
collision sans mémoire. On peut réaliser la méme technique pour RSA! D’aprés le théoréme des restes
chinois, on sait que Z,, ~ Z, X Z.
(1) Siwx; et za collisionnent dans Z,, que peut-on dire de pged(z1 — z2,n) ?
(2) On utilise alors la fonction f : Z, — Z, définie par f(z) = Az ol A est une constante fixée.
Soit zg un élément donné, que signifie 'existence d’une collision dans Z, pour la suite définie par
ug = xg et u; = Au;_1 7 Que dire de la suite u; 7
(3) Méme question avec une suite arithmétique ?

(4) En pratique on utilise une fonction de la forme x — x?+c. En utilisant la recherche de cycle donnée
aux TDs sur les fonctions de hachage ainsi que la détection avec le pged comme vu précédemment,
trouver des collisions sur RSA.

(5) Tracer les courbes de temps d’éxécution de votre algorithme pollard-rho en fonction de la taille
des entiers p (et q).

(6) Pouvez-vous dire quelle est la complexité de cet algorithme ?
(7) Faites-le sur 1267650600228402790082356974917 (ga peut prendre un peu de temps...)

Exercice 8. Pollard-rho sur log discret.
Pour aller plus loin et si vous avez le temps, passez du temps ici :
https://fr.wikipedia.org/wiki/Algorithme_rho_de_Pollard_(logarithme_discret)

(1) Programmez Palgorithme rho de pollard sur le logarithme discret.
(2) Comparez les temps d’éxécution avec baby-step giant-step.

(3) Expliquez.

https://fr.wikipedia.org/wiki/Algorithme_rho_de_Pollard_(logarithme_discret)

