
Séance 10 (et 11) - Travaux Pratiques
Cryptanalyse des Chiffrements Asymétriques

Yann Rotella

2026

Toute cette séance se fait en petits groupes. L’objectif est de construire son fichier python
contenant des fonctions cryptographiques vues en cours, puis de programmer des

cryptanalyses sur ces différentes fonctions.

Programmation des systèmes cryptographiques connus
Exercice 1. Echange de clefs de Diffie-Hellman.

Si ce n’est déjà fait, programmez l’échange de clefs de Diffie et Hellman vu en cours sur Zp.

Exercice 2. ElGamal .
Idem, programmez les fonctions de chiffrement et de déchiffrement du cryptosystème d’El Gamal.

Exercice 3. RSA.
Programmez les fonctions de chiffrement et de déchiffrement du cryptosystème de RSA.

Interlude
Exercice 4. Génération de nombres premiers.

Tous les algorithmes vus jusqu’à présent nécessitent la création de nombres premiers de grande taille.
Cependant, nous n’avons pas d’algorithme « facile » permettant de produire des nombres premiers
aléatoires. On sait cependant tester si un nombre est premier avec le test de Fermat. La stratégie consiste
donc à tirer un nombre aléatoire, tester si celui-ci est premier et recommencer.

(1) Rappeler le petit théorème de Fermat.
(2) On utilise ce théorème comme test probabiliste. Programmez une fonction test qui prend en

entrée un nombre et test si celui-ci est premier.
(3) On peut montrer que la probabilité que le test de Fermat échoue après ℓ itérations est au plus

2−ℓ. Combien d’itérations doit-on effectuer afin d’avoir une probabilité d’erreur inférieure à 2−80 ?

(4) Programmez une génération de nombres premiers en python avec un taux de réussite suffisant à
votre goût.

1



Cryptanalyse du log discret et de RSA
Exercice 5. La factorisation simple.

Soit n = pq impair avec p > q.
(1) Programmez la méthode de factorisation par division successive en partant de i = 2.
(2) Vérifier que n = t2 − s2 avec t = p+q

2 et s = p−q
2 .

(3) On suppose maintenant que p est très proche de q, montrer alors que t est proche de
√
n.

(4) En déduire une manière de factoriser deux nombres lorsque ceux-ci sont proches. Programmez
cette méthode appelée méthode de Fermat.

Exercice 6. Baby-step giant step sur log discret .
Comme vu en cours, la sécurité de plusieurs chiffrements repose sur DDH (ou CDH).

(1) Rappelez ces problèmes formellement.
(2) Rappeler le problème du logarithme discret.
(3) Montrer pourquoi le logarithme discret est « plus dur »que CDH, qui lui-même est plus dur que

DDH.
(4) On cherche maintenant à calculer le logarithme discret dans Zp. Pour cela, on utilise l’idée sui-

vante :
x = x1 + x2⌈

√
p⌊

avec x1 et x2 inférieurs à m = ⌈√p⌊.
(5) Montrer que pour tout h ∈ (Zp)

×, il existera toujours x1 et x2 tels que hg−x1 = gx2⌈
√
p⌊ mod p

(6) En python, programmez l’algorithme dit de Baby-Step-Giant-Step : Calculer la liste

L = {1, hg, hg2, . . . hgm}

où g est un générateur du groupe multiplicatif.
(7) Ensuite pour chaque i ∈ {1, . . . ,m}, tester si (gm) ∈ L et renvoyer la valeur d’un logarithme

discret.
(8) Tester votre algorithme sur plusieurs valeurs de p générées avec votre fonction de génération de

nombres premiers, différents g.
(9) D’ailleurs, pouvez-vous réfléchir à comment trouver un générateur de Zp ?
(10) Comparez des challenges que vous réussissez et donnez les aux autres groupes. Comparez vos

temps d’éxécution.
(11) Une idée pour aller plus vite ?

Exercice 7. Pollard-rho sur RSA.
Ici n dénote un module RSA. Nous avons vu au TD sur les fonctions de hachage comment trouver une
collision sans mémoire. On peut réaliser la même technique pour RSA ! D’après le théorème des restes
chinois, on sait que Zn ≈ Zp × Zq.

(1) Si x1 et x2 collisionnent dans Zp, que peut-on dire de pgcd(x1 − x2, n) ?
(2) On utilise alors la fonction f : Zn → Zn définie par f(x) = λx où λ est une constante fixée.

Soit x0 un élément donné, que signifie l’existence d’une collision dans Zp pour la suite définie par
u0 = x0 et ui = λui−1 ? Que dire de la suite ui ?

(3) Même question avec une suite arithmétique ?
(4) En pratique on utilise une fonction de la forme x 7→ x2+c. En utilisant la recherche de cycle donnée

aux TDs sur les fonctions de hachage ainsi que la détection avec le pgcd comme vu précédemment,
trouver des collisions sur RSA.

(5) Tracer les courbes de temps d’éxécution de votre algorithme pollard-rho en fonction de la taille
des entiers p (et q).

2



(6) Pouvez-vous dire quelle est la complexité de cet algorithme ?
(7) Faites-le sur 1267650600228402790082356974917 (ça peut prendre un peu de temps...)

Exercice 8. Pollard-rho sur log discret .
Pour aller plus loin et si vous avez le temps, passez du temps ici :
https://fr.wikipedia.org/wiki/Algorithme_rho_de_Pollard_(logarithme_discret)

(1) Programmez l’algorithme rho de pollard sur le logarithme discret.
(2) Comparez les temps d’éxécution avec baby-step giant-step.
(3) Expliquez.

3

https://fr.wikipedia.org/wiki/Algorithme_rho_de_Pollard_(logarithme_discret)

