Séance 6 - Travaux Pratiques
Cryptanalyse

Yann ROTELLA

2026

Seul.e 45 minutes

Exercice 1. Génération de clefs, recherche exhaustive et code.
Un étudiant du cours a voulu réaliser une demande d’amélioration de sa note au contréle continu. Pour
se faire bien voir du professeur de cryptographie, cet étudiant a chiffré son message avec AES et a donné
la clef secréte au professeur.

Votre objectif final est de trouver la réponse exacte du professeur.

Pour ce faire, on vous donne un bout de code Python. Ce bout de code utilise la librairie cryptography,
probablement a télécharger avant de commencer.

(1) Récupérer le bout de code et faites-le tourner.
Pour simuler I’observation d’un autre étudiant malicieux qui aurait écouté sur le canal de communication,
on vous donne (dans le code, en commentaire) ce que le code a donné avec la bonne clef : les message
réellement transmis.

(2) Lire le code. Combien d’entropie y’a t’il dans la clef secréte ?

(3) A quoi sert le Nonce ? Quel probléme y’a t’il dans ce code a ce sujet ?
(4) Quelle est la taille de la réponse ? Expliquer. Est-ce un probléme ? Pouvons-nous le gérer ?
(5)

5) Retrouver la réponse du professeur.

En groupe - cryptanalyse

Exercice 2. Mode compteur.
L’objectif est le méme qu’au premier exercice. Avec le bout de code de I'exercice 2 (ex02.py), retrouvez
le message renvoyé et les éléments secrets. Pouvez-vous identifier des identifications de la personne qui a
écrit le message 7

Exercice 3. Fonctions de hachage.
Dans cet exercice, nous allons regarder les attaques génériques et essayer de chercher des collisions, de
maniére générique sur les foncions de hachage. Prenez le code correspondant & l’exercice 3 exo3.py.
On utilise SHAKE qui est une eXtandable Output Function (XOF) et on va regarder la complexité de
résolution et le temps de recherche d’une collision en fonction de la taille de la sortie.

(1) On utilise SHAKE128. N’hésitez pas a regarder sur internet et & comprendre ce que c’est !

(2) En utilisant des listes contenant des digest de chaines de caractéres aléatoires, écrire une fonction
qui renvoie une collision sur un digest de taille donnée en paramétre.

(3) Tracer en python le temps d’éxécution moyen de cette fonction en fonction de la taille du digest.



Il est possible de réaliser la recherche de collisions sans mémoire. Pour cela, on exploite généralement un
algorithme trés pratique de détection de cycles dans une suite définie par u, = f(u,—_1) avec ug = x pris
aléatoirement et f : X — X un espace de taille arbitraire.
(4) Lire et regarder ces algorithmes sur les pages wikipedia : https://fr.wikipedia.org/wiki/
Algorithme_du_1i%C3/,A8vre_et_de_la_tortuelou en anglaishttps://en.wikipedia.org/wiki/
Cycle_detection

(5) Expliquer pourquoi trouver le cycle de (uy,),>0 permet de retrouver aussi une collision.

(6) Ici on cherche une collision avec une fonction qui n’a pas le méme espace de départ et d’arrivée. Si
c’était le cas on pourrait exploiter I’algorithme du dessus. Mais... pouvez-vous trouver une solution
a cela?

(7) Faites une fonction de recherche de collision sans mémoire qui exploite l’algorithme précédant.

(8) Chercher des collisions sur SHAKE128, en augmentant pas a pas la taille de sortie. Quels temps
obtenez-vous ? Est-ce cohérent par rapport a la recherche avec mémoire ?

(9) Tracer les courbes de la méme maniére que précédemment et regardez jusqu’ott vous pouvez aller
pour trouver des collisions.

Exercice complémentaire

Exercice 4. Les multi-collisions.

Une idée pour améliorer la sécurité de fonctions de hachage peut consister a concaténer la sortie de deux
fonctions de hachages, permettant alors une sortie de plus grande taille. En 2004, A. Joux a cependant
montré que ce type de construction n’apportait pas nécessairement la sécurité attendue.

(1) Lire l’article des multicollisions intitulé « Multicollisions in Iterated Hash Functions. Application
to Cascaded Constructions ». Disponible & 'url suivante : https://link.springer.com/content/
pdf/10.1007/978-3-540-28628-8_19.pdf

(2) Programmer la recherche de multicollisions sur la concaténation de deux fonctions de hachage
bien choisies.


https://fr.wikipedia.org/wiki/Algorithme_du_li%C3%A8vre_et_de_la_tortue
https://fr.wikipedia.org/wiki/Algorithme_du_li%C3%A8vre_et_de_la_tortue
https://en.wikipedia.org/wiki/Cycle_detection
https://en.wikipedia.org/wiki/Cycle_detection
https://link.springer.com/content/pdf/10.1007/978-3-540-28628-8_19.pdf
https://link.springer.com/content/pdf/10.1007/978-3-540-28628-8_19.pdf

