Master 1 Informatique 2023–2024 Compléments de maths

Corrigé CC2 - TD3

Exercice 1.

Soit G un groupe, H, K deux sous-groupes de G. Prouver la proposition suivante :

 $H \cup K$ est un sous-groupe de G si et seulement si $H \subset K$ ou $K \subset H$.

Réponse.

Prouvons cette équivalence par double implication.

Sens direct ⇒

Supposons donc : $H \cup K$ est un sous-groupe de G et prouvons par l'absurde $[H \subset K \text{ ou } K \subset H]$. Supposons donc $K \not\subset H$ et $H \not\subset K$.

Autrement dit, il existe $h \in H$ tel que $h \notin K$ et $k \in K$ tel que $k \notin H$. Soient un tel k et un tel k. Puisque k appartiennent au sous-groupe $k \in K$ de k appartient lui aussi à k appartient à k

Supposons que h*k appartient à H, alors il existe $h'\in H$ tel que h*k=h', et en multipliant à gauche par h^{-1} des deux côtés de l'égalité et en simplifiant, on obtient $k=h^{-1}*h'$. Ainsi, puisque h,h' et donc $h^{-1}*h'$ appartiennent à H (car H est un sous-groupe), on en déduit $k\in H$. Ceci est absurde car par définition $k\in K\setminus H$.

De même, supposons que h*k appartient à K. Alors il existe $k'\in K$ tel que h*k=k', d'où l'on déduit $h=k'*k^{-1}\in K$ ce qui est absurde car $h\notin K$.

Finalement l'hypothèse $K \not\subset H$ et $H \not\subset K$ s'avère absurde. On en déduit donc que $[H \subset K \text{ ou } K \subset H]$.

Sens indirect ←

Supposons $[H \subset K \text{ ou } K \subset H]$. Dans le premier cas $H \cup K = K \text{ donc } H \cup K$ est un sous-groupe de G puisque K en est un. Dans le second, $H \cup K = H \text{ donc } H \cup K$ est un sous-groupe de G puisque H en est un. Dans tous les cas, $H \cup K$ est donc un sous-groupe de G ce qui prouve l'implication indirecte.

Conclusion

Par double implication, nous avons prouvé l'équivalence recherchée.

Exercice 2

Soit * la loi de composition sur $\mathbb R$ définie par : $\forall (x,y) \in \mathbb R^2, \ x*y := (x^3+y^3)^{\frac13}$. Montrer que $(\mathbb R,*)$ est un groupe commutatif.

Réponse.

Associativité Soit $(x, y, z) \in \mathbb{R}^3$. On observe :

$$(x*y)*z = \left(\left((x^3+y^3)^{\frac{1}{3}}\right)^3 + z^3\right)^{\frac{1}{3}} = \left(x^3+y^3+z^3\right)^{\frac{1}{3}} = \left(\left(x^3+(y^3+z^3)^{\frac{1}{3}}\right)^3\right)^{\frac{1}{3}} = x*(y*z).$$

Ainsi (x*y)*z=x*(y*z) et ce pour tout x,y,z de \mathbb{R} , la loi est donc associative.

Existence d'un élément neutre Soit $x \in \mathbb{R}$. On observe que $x*0=(x^3+0^3)^{\frac{1}{3}}=(x^3)^{\frac{1}{3}}=x$. De même $0*x=(0^3+x^3)^{\frac{1}{3}}=(x^3)^{\frac{1}{3}}=x$. On en déduit donc que 0 est un élément (plus exactement l'élément) neutre pour *.

Existence d'un inverse pour tout x Soit $x \in \mathbb{R}$. On observe que

$$x * -x = (x^3 + (-x)^3)^{\frac{1}{3}} = (x^3 + (-1)^3 x^3)^{\frac{1}{3}} = (x^3 - x^3)^{\frac{1}{3}} = 0^{\frac{1}{3}} = 0,$$

où l'on a utilisé la multiplicativité de l'exponentiation. On prouve de même que -x*x=0. Ainsi, l'inverse de x pour * est -x. Nous avons donc prouvé que tout élément a bien un inverse.

Finalement, nous avons bien montré que $(\mathbb{R},*)$ est un groupe.

Commutativité Soient $x,y\in\mathbb{R}$. $x*y=(x^3+y^3)^{\frac{1}{3}}=(y^3+x^3)^{\frac{1}{3}}=y*x$ où l'on a utilisé pour l'égalité centrale, la commutativité de l'addition. Ainsi x*y=y*x quelque soient $x,y\in\mathbb{R}$. $(\mathbb{R},*)$ est donc un groupe commutatif.